M1.(a) Macromolecular / giant covalent / giant molecule
Not giant atomic
(b) No delocalised electrons / no free ions / no free charged particles
(c) $\mathrm{SiO}_{2}+6 \mathrm{HF} \longrightarrow \mathrm{H}_{2} \mathrm{SiF}_{6}+2 \mathrm{H}_{2} \mathrm{O}$ Accept multiples

M2.(a) M1 $550 \times^{\frac{100}{95}}=579 \mathrm{~g}$ would be 100% mass
Allow alternative methods.
There are 4 process marks:

M2 So ${ }^{\frac{579}{65}}=8.91$ moles NaN_{3}
or
M1 $\frac{550}{65}=8.46$ moles NaN_{3} (this is 95%)
M2 So 100% would be $8.46 \times{ }^{\frac{100}{95}}=8.91$ moles NaN_{3}
1: mass $\div 65$
2: mass or moles $\times 100 / 95$ or $\times 1.05$
3: moles $\mathrm{NaN}_{3} \times 2$
4: moles $\mathrm{NaNH}_{2} \times 39$

Then M3 Moles $\mathrm{NaNH}_{2}=8.91 \times 2=(17.8(2)$ moles $)$

M4 mass $\mathrm{NaNH}_{2}=17.8(2) \times 39$

M5 $\underline{693}$ or $\underline{694}$ or $\underline{695}(\mathrm{~g})$
If 693 , 694 or 695 seen to 3 sig figs award 5 marks
(b) M1 308 K and 150000 Pa

M3 $=4.4(0)$ or 4.395 moles N_{2}
Allow only this answer but allow to more than 3 sig figs

M4 Moles $\mathrm{NaN}_{3}=4.395 \underline{x}^{\frac{2}{3}} \quad(=2.93)$
M4 is for M3 $\times \frac{2}{3}$

M5 Mass $\mathrm{NaN}_{3}=(2.93) \times 65$
M5 is for moles M4 $\times 65$
$\mathrm{M} 6=191 \mathrm{~g}$
Allow 190 to 191 g allow answers to 2 sig figs or more
(c) (i) $150 / 65=2.31$ moles NaN_{3} or 2.31 moles nitrous acid

Conc $=2.31 \times \frac{1000}{500}$

M2 is for $M 1 \times 1000 / 500$
4.6(1) or 4.6(2) ($\mathrm{mol} \mathrm{dm}^{-3}$)

Only this answer
(ii) $3 \mathrm{HNO}_{2} \longrightarrow \mathrm{HNO}_{3}+2 \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

Can allow multiples
(d) Ionic

$$
\text { If not ionic then } C E=0 / 3
$$

Oppositely charged ions $/ \mathrm{Na}^{+}$and $\mathrm{N}_{3}{ }^{-}$ions
Penalise incorrect ions here but can allow M3

Strong attraction between (oppositely charged) ions / lots of energy needed to overcome (strong) attractions (between ions)

M3 dependent on M2
(e) (i) $\mathrm{N} \equiv \mathrm{N} \longrightarrow \mathrm{N}^{-}$

Only
(ii) $\mathrm{CO}_{2} / \mathrm{N}_{2} \mathrm{O} / \mathrm{BeF}_{2} / \mathrm{HN}_{3}$

Allow other correct molecules
(iii) MgN_{6}

Only

M3.(a) 2-bromo-2,3-dimethylbutane
Ignore punctuation.
$\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{Br}$ or $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{X}$ or $\mathrm{C}_{x} \mathrm{H}_{2 x+1} \mathrm{Br}$
Any order.

Stronger / more vdw (forces) between molecules (of 1-bromohexane)
QoL
Allow converse arguments for Z
Not just more IMF.
Ignore size of molecule.
(b)

$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}$
Any order

Do not allow any numbers in the answer.
(ii) Contains positive (metal) ions or protons or nuclei and delocalised / mobile / free / sea of electrons

Ignore atoms.

Strong attraction between them or strong metallic bonds
Allow 'needs a lot of energy to break / overcome' instead of 'strong'.
If strong attraction between incorrect particles, then $C E=0$ /
2.

If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then $C E=0$.
(iii)

(iv) Layers / planes / sheets of atoms or ions can slide over one another QoL.
(b) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8}\left(4 s^{0}\right)$

Only.
(ii) $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{SOCl}_{2} \longrightarrow \mathrm{NiCl}_{2}+6 \mathrm{SO}_{2}+12 \mathrm{HCl}$

Allow multiples.
$\mathrm{NaOH} / \mathrm{NH}_{3} / \mathrm{CaCO}_{3} / \mathrm{CaO}$
Allow any name or formula of alkali or base.
Allow water.

M5.(a) Giant covalent / giant molecular / macromolecular
Not giant alone.
Not covalent alone.
(b) Shared pair of electrons / one electron from each C atom

Page 6
(c) No delocalised / free / mobile electrons

Allow all (outer) electrons involved in (covalent) bonds. Ignore ions.
(d) CH

Allow HC
 C and H must be capital letters.

M6.(a)

Mark is for correct number of bonds and lone pair in each case.
Ignore charges if shown.

Pyramidal / trigonal pyramid
Allow tetrahedral.
107°
Allow 107 to 107.5°.
(b) M1 Ionic
$C E=0 / 3$ if not ionic.

M2 Oppositely charged ions / Tl^{+}and Br^{-}ions If molecules / intermolecular forces / metallic bonding, $C E=0$.

M3 Strong attraction between ions
M3 dependent on M2.
Allow 'needs a lot of energy to break / overcome' instead of 'strong'.
(c) $\mathrm{TI}+\frac{1}{2} \mathrm{Br}_{2} \longrightarrow \mathrm{TIBr}$

Allow multiples.
Ignore state symbols even if incorrect.

